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Introduction

● Computational geometry is the branch of computer science that 
studies algorithms for solving geometric problems.

● In modern engineering and mathematics, computational geometry 
has applications in such diverse fields as computer graphics, robotics, 
VLSI design, computer-aided design, molecular modeling, metallurgy, 
manufacturing, textile layout, forestry, and statistics.
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Introduction

● The input to a computational geometry problem is typically a description of a 
set of geometric objects, such as a set of points, a set of line segments, or 
the vertices of a polygon in counterclock wise order.

● The output is often a response to a query about the objects, such as 
whether any of the lines intersect, or perhaps a new geometric object, such 
as the convex hull (smallest enclosing convex polygon) of the set of points.
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Introduction

● In this chapter, we look at a few computational-geometry algorithms in two 
dimensions, that is, in the plane.

● We represent each input object by a set of points {p1, p2, p3, . . . }, where 
each pi = (xi, yi) and xi, yi  R. ∈

● For example, we represent an n-vertex polygon P by a sequence

{p0, p1, p2 . . . .  pn}

of its vertices in order of their appearance on the boundary of P .
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Line-Segment Properties

● Several of the computational-geometry algorithms in this chapter 
require answers to questions about the properties of line segments.

● A convex combination of two distinct points p1 = (x1, y1) and p2 = (x2, 
y2) is any point p3 = (x3, y3) such that for some α in the range 0≤ α ≤ 1, 
we have x3 = α x1 + (1 - α )x2 and y3 = α y1 + (1 - α )y2. 

● We also write that p3 = α p1 + (1 - α )p2.

● Intuitively, p3 is any point that is on the line passing through p1 and p2 
and is on or between p1 and p2 on the line.
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Line-Segment Properties

● Given two distinct points p1 and p2, the line segment p1p2 is the set of 
convex combinations of p1 and p2. 

● We call p1 and p2 the endpoints of segment p1p2. 

● Sometimes the ordering of p1 and p2 matters, and we speak of the 
directed segment  p1p2.

● If p1 is the origin (0, 0), then we can treat the directed segment p1p2 
as the vector p2.
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Line-Segment Properties

● In this section, we shall explore the following questions:

● We can answer each question in O(1) time.
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Line-Segment Properties
Cross Products

● Computing cross products lies at the heart of our line-segment methods. 
Consider vectors p1 and p2, shown in figure:

 

(a) The cross product of vectors 
p1 and p2 is the signed area of 
the parallelogram.

(b) The lightly shaded region contains vectors that 
are clockwise from p. The darkly shaded region
contains vectors that are counterclockwise from p.
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Line-Segment Properties
Cross Products

● Cross product p1 x p2 can be viewed as the signed area of the parallelogram formed 
by the points (0, 0), p1, p2 and (p1 + p2) =  (x1 + x2, y1 + y2).

● An equivalent more useful, definition gives the cross product as the determinant of 
a matrix.

● If p1 x p2 is positive, then p1 is clockwise from p2 with respect to the origin (0, 0) and 
if this cross product is negative, then p1 is counterclockwise from p2.

● A boundary condition arises if the cross product is 0; in this case, the vectors are 
co-linear, pointing in either the same or opposite directions. 
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Line-Segment Properties
Cross Products

● To determine whether a directed segment p0p1 is closer to a directed segment 
p0p2 in a clockwise direction or in a counterclockwise direction with respect to 
their common endpoint p0, we simply translate to use p0 as the origin.

● That is, we let p1 - p0 denote the vector p’1 = (x’1, y’1), where x’1 = x1 - x0 and y’1 = 
y1 - y0, and we define p2 -p0 similarly.

● We then compute the cross product

 
● If this cross product is positive, then p0p1 is clockwise from p0p2; if negative, it is 

counterclockwise.
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Line-Segment Properties
Determining whether consecutive segments turn left or right

● Our next question is whether two consecutive line segments p0p1 and p1p2 turn 
left or right at point p1. Equivalently, we want a method to determine which way a 
given angle p0p1p2 turns. 

● Cross products allow us to answer this question without computing the angle. 

● As Figure below shows, we simply check whether directed segment p0p2 is 
clockwise or counterclockwise relative to directed segment  p0p1.

 



12

Line-Segment Properties
Determining whether consecutive segments turn left or right

● To do so, we compute the cross product (p2 - p0) x (p1 - p0). 

● If the sign of this cross product is negative, the p0p2 is counterclockwise with 
respect to p0p1, and thus we make a left turn at p1. 

● A positive cross product indicates a clockwise orientation and a right turn. 

● A cross product of 0 means that points p0, p1, and p2 are colinear.

 

 



13

Line-Segment Properties

Determining whether two line segments intersect
● To determine whether two line segments intersect, we check whether each 

segment straddles the line containing the other.

● A segment p1p2 straddles a line if point p1 lies on one side of the line and 
point p2 lies on the other side.

● A boundary case arises if p1 or p2 lies directly on the line.

● Two line segments intersect if and only if either (or both) of the following 
conditions holds:

1) Each segment straddles the line containing the other.

2) An endpoint of one segment lies on the other segment. (This condition 
comes from the boundary case.)
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● SEGMENTS-INTERSECT 
returns TRUE if segments p1p2 
and p3p4 intersect and FALSE 
if they do not.

● It calls the subroutines 
DIRECTION, which computes 
relative orientations using the 
cross-product method above, 
and ON-SEGMENT, which 
determines whether a point 
known to be colinear with a 
segment lies on that segment.
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Determining Whether Any pair of Segments Intersects

● This section presents an algorithm for determining whether any two 
line segments in a set of segments intersect.

● The algorithm uses a technique known as “sweeping,” which is 
common to many computational-geometry algorithms.

● The algorithm runs in O(n lg n) time, where n is the number of 
segments we are given.

● It determines only whether or not any intersection exists.
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Determining Whether Any pair of Segments Intersects

● In sweeping, an imaginary vertical sweep line passes through the 
given set of geometric objects, usually from left to right.

● We treat the spatial dimension that the sweep line moves across, in 
this case the x-dimension, as a dimension of time. 
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Determining Whether Any pair of Segments Intersects

● To describe and prove correct our algorithm for determining whether 
any two of n line segments intersect, we shall make two simplifying 
assumptions.

● First, we assume that no input segment is vertical. Second, we 
assume that no three input segments intersect at a single point.
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Determining Whether Any pair of Segments Intersects

Ordering segments

● Because we assume that there are no vertical segments, we know 
that any input segment intersecting a given vertical sweep line 
intersects it at a single point.

● Thus, we can order the segments that intersect a vertical sweep line 
according to the y-coordinates of the points of intersection.
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Determining Whether Any pair of Segments Intersects

Ordering segments

● To be more precise, consider two segments s1 and s2. We say that 
these segments are comparable at x if the vertical sweep line with x-
coordinate x intersects both of them. 

● We say that s1 is above s2 at x, written s1    s2, if s1 and s2 are 
comparable at x and the intersection of s1 with the sweep line at x is 
higher than the intersection of s2 with the same sweep line, or if s1 
and s2 intersect at the sweep line.

● For any given x, the relation      is a total preorder for all segments 
that intersect the sweep line at x.
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Determining Whether Any pair of Segments Intersects
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Determining Whether Any pair of Segments Intersects

Moving the sweep line

● Sweeping algorithms typically manage two sets of data:

1) The sweep-line status gives the relationships among the objects that the 
sweep line intersects.

2) The event-point schedule is a sequence of points, called event points, which 
we order from left to right according to their x-coordinates. As the sweep 
progresses from left to right, whenever the sweep line reaches the x-coordinate 
of an event point, the sweep halts, processes the event point, and then 
resumes. Changes to the sweep-line status occur only at event points.
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Determining Whether Any pair of Segments Intersects

● The sweep-line status is a total preorder T , for which we require the 
following operations:

1) INSERT(T, s): insert segment s into T.

2) DELETE(T, s): delete segment s from T.

3) ABOVE(T, s): return the segment immediately above segment s in T.

4) BELOW(T, s): return the segment immediately below segment s in T.
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Determining Whether Any pair of Segments Intersects
● If the input contains n segments, we can perform each of the operations 

INSERT, DELETE, ABOVE, and BELOW in O(lg n) time using red-black 
trees.

● Recall that the red-black-tree operations  involve comparing keys.

● We can replace the key comparisons by comparisons that use cross 
products to determine the relative ordering of two segments.

Refer to Chapter 13 of “Introduction to the Algorithms” book for more 
information regarding red-black-trees.
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Determining Whether Any pair of Segments Intersects

● The following algorithm takes as input a set S of n line segments, 
returning the boolean value TRUE if any pair of segments in S 
intersects, and FALSE otherwise.

● A red-black tree maintains the total preorder T .
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Determining Whether Any pair of Segments Intersects
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Determining Whether Any pair of Segments Intersects
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Determining Whether Any pair of Segments Intersects

Running time

● If set S contains n segments, then ANY-SEGMENTS-INTERSECT 
runs in time O(n lg n).

● Line 1 takes O(1) time.

● Line 2 takes O(n lg n) time, using mergesort or heapsort.

● The for loop of lines 3–11 iterates at most once per event point, and 
so with 2n event points, the loop iterates at most 2n times.

● Each iteration takes O(lg n) time, since each red-black-tree operation 
takes O(lg n) time and, each intersection test takes O(1) time. 

● The total time is thus O(n lg n).
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Convex Hull

● The convex hull of a set Q of points, denoted by CH(Q), is the 
smallest convex polygon P for which each point in Q is either on the 
boundary of P or in its interior.



30

Convex Hull

● We implicitly assume that all points in the set Q are unique and that Q 
contains at least three points which are not colinear. 

● Intuitively, we can think of each point in Q as being a nail sticking out 
from a board. The convex hull is then the shape formed by a tight 
rubber band that surrounds all the nails.
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Convex Hull

● We shall discuss two algorithms that compute the convex hull of a set 
of n points. 

● Both algorithms output the vertices of the convex hull in 
counterclockwise order. 

● The first, known as Graham’s scan, runs in O(n lg n) time.

● The second, called Jarvis’s march, runs in O(n h) time, where h is the 
number of vertices of the convex hull. 
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Convex Hull

● As Figure below illustrates, every vertex of CH(Q) is a point in Q.

● Both algorithms exploit this property, deciding which vertices in Q to 
keep as vertices of the convex hull and which vertices in Q to reject.
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Convex Hull
● Computing the convex hull of a set of points is an interesting problem in its 

own right.

● Moreover, algorithms for some other computational-geometry problems start 
by computing a convex hull.

● Consider, for example, the two-dimensional farthest-pair problem: we are 
given a set of n points in the plane and wish to find the two points whose 
distance from each other is maximum.  

● We can find the farthest pair of vertices of an n-vertex convex polygon in 
O(n) time. 

● Thus, by computing the convex hull of the n input points in O(n lg n) time 
and then finding the farthest pair of the resulting convex-polygon vertices, 
we can find the farthest pair of points in any set of n points in O(n lg n) time.
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Graham’s Scan
● Graham’s scan solves the convex-hull problem by maintaining a stack 

S of candidate points.

● It pushes each point of the input set Q onto the stack one time,and it 
eventually pops from the stack each point that is not a vertex of 
CH(Q).

● When the algorithm terminates, stack S contains exactly the vertices 
of CH(Q), in counterclockwise order of their appearance on the 
boundary.
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Graham’s Scan
● The procedure GRAHAM-SCAN takes as input a set Q of points, 

where |Q| ≥ 3.

● It calls the functions TOP(S), which returns the point on top of stack S 
without changing S, and NEXT-TO-TOP(S), which returns the point 
one entry below the top of stack S without changing S.

● As we shall prove in a moment, the stack S returned by GRAHAM-
SCAN contains, from bottom to top, exactly the vertices of CH(Q) in 
counterclockwise order.
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Graham’s Scan
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Graham’s Scan

(a)The sequence (p1,p2, . . . p12) 
of points numbered in order of 
increasing polar angle relative to 
p0, and the initial stack S 
containing p0, p1, and p2.

(b)–(k) Stack S after each 
iteration of the for loop of 
lines 7–10. Dashed lines 
show nonleft turns, which 
cause points to be popped 
from the stack.
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Graham’s Scan

(b)–(k) Stack S after each 
iteration of the for loop of 
lines 7–10. Dashed lines 
show nonleft turns, which 
cause points to be popped 
from the stack.
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Graham’s Scan

(b)–(k) Stack S after each 
iteration of the for loop of 
lines 7–10. Dashed lines 
show nonleft turns, which 
cause points to be popped 
from the stack.
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Graham’s Scan

(b)–(k) Stack S after each 
iteration of the for loop of 
lines 7–10. Dashed lines 
show nonleft turns, which 
cause points to be popped 
from the stack.
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Graham’s Scan

(b)–(k) Stack S after each 
iteration of the for loop of 
lines 7–10. Dashed lines 
show nonleft turns, which 
cause points to be popped 
from the stack.
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Graham’s Scan

(b)–(k) Stack S after each 
iteration of the for loop of 
lines 7–10. Dashed lines 
show nonleft turns, which 
cause points to be popped 
from the stack.
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Graham’s Scan

(b)–(k) Stack S after each 
iteration of the for loop of 
lines 7–10. Dashed lines 
show nonleft turns, which 
cause points to be popped 
from the stack.

(l) The convex hull returned by 
the procedure
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Jarvis’s march

● Jarvis’s march computes the convex hull of a set Q of points by a 
technique known as package wrapping (or gift wrapping).

● The algorithm runs in time O(n h), where h is the number of vertices 
of CH(Q). 
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Jarvis’s march

● Intuitively, Jarvis’s march simulates wrapping a taut piece of paper 
around the set Q.

● We start by taping the end of the paper to the lowest point in the set, 
that is, to the same point p0 with which we start Graham’s scan. We 
know that this point must be a vertex of the convex hull.

● We pull the paper to the right to make it taut, and then we pull it 
higher until it touches a point.

● This point must also be a vertex of the convex hull.

● Keeping the paper taut, we continue in this way around the set of 
vertices until we come back to our original point p0.
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Jarvis’s march
● More formally, Jarvis’s march builds a sequence H = (p0, p1 . . . ph) of 

the vertices of CH(Q). We start with p0. As Figure below shows, the 
next vertex p1 in the convex hull has the smallest polar angle with 
respect to p0. (In case of ties, we choose the point farthest from p0.)
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Jarvis’s march
● Similarly, p2 has the smallest polar angle with respect to p1, and so 

on.

● When we reach the highest vertex, say pk (breaking ties by choosing 
the farthest such vertex), we have constructed, as Figure below 
shows, the right chain of CH(Q). 
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Jarvis’s march
● To construct the left chain, we start at pk and choose pk+1 as the point 

with the smallest polar angle with respect to pk, but from the negative 
x-axis. 

● We continue on, forming the left chain by taking polar angles from the 
negative x-axis, until we come back to our original vertex p0.
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Jarvis’s march
● If implemented properly, Jarvis’s march has a running time of O(n h) 

● For each of the h vertices of CH(Q), we find the vertex with the 
minimum polar angle.

● Each comparison between polar angles takes O(1) time.

● We can compute the minimum of n values in O(n) time if each 
comparison takes O(1) time. Thus, Jarvis’s march takes O(n h) time.
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Voronoi Diagrams

● It’s a simple mathematical intricacy that often arises in nature, and 
can also be a very practical tool in science.

● It’s named after the famous Russian mathematician Georgy Voronoi. 

● We can also refer to it as the Voronoi tesselation, Voronoi 
decomposition, or Voronoi partition.
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Voronoi Diagrams

● In the illustration below, we have a set of 40 randomly placed orange 
points on a 2-dimensional plane, along with its Voronoi diagram. The 
regions or tiles that we get as a result are called Voronoi cells:
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Voronoi Diagrams

● Input description: A set S of points p1, . . . , pn.

● Problem description: Decompose space into regions around each 
point such that all points in the region around pi are closer to pi than 
any other point in S.

● Discussion: Voronoi diagrams represent the region of influence 
around each of a given set of sites. If these sites represent the 
locations of McDonald’s restaurants, the Voronoi diagram partitions 
space into cells around each restaurant. For each person living in a 
particular cell, the defining McDonald’s represents the closest place to 
get a Big Mac.
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Voronoi Diagrams

Applications:

● Nearest neighbor search – Finding the nearest neighbor of query point 
q from among a fixed set of points S is simply a matter of determining 
the cell in the Voronoi diagram of S that contains q.

● Facility location – Suppose McDonald’s wants to open another 
restaurant. To minimize interference with existing McDonald’s, it should 
be located as far away from the closest restaurant as possible. This 
location is always at a vertex of the Voronoi diagram, and can be found 
in a linear-time search through all the Voronoi vertices.
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Voronoi Diagrams

Applications:

● Largest empty circle – Suppose you needed to obtain a large, 
contiguous, undeveloped piece of land on which to build a factory. 
The same condition used to select McDonald’s locations is 
appropriate for other undesirable facilities, namely that they be as far 
as possible from any relevant sites of interest. A Voronoi vertex 
defines the center of the largest empty circle among the points.

● Path planning – If the sites of S are the centers of obstacles we seek 
to avoid, the edges of the Voronoi diagram define the possible 
channels that maximize the distance to the obstacles. Thus the 
“safest” path among the obstacles will stick to the edges of the 
Voronoi diagram.
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Voronoi Diagrams

✔ Each edge of a Voronoi diagram is a segment of the perpendicular 
bisector of two points in S, since this is the line that partitions the 
plane between the points.

✔ The conceptually simplest method to construct Voronoi diagrams is 
randomized incremental construction.

✔ To add another site to the diagram, we locate the cell that contains it 
and add the perpendicular bisectors separating this new site from all 
sites defining impacted regions.

✔ If the sites are inserted in random order, only a small number of 
regions are likely to be impacted with each insertion.
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Voronoi Diagrams
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Voronoi Diagrams
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Voronoi Diagrams
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Voronoi Diagrams
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Voronoi Diagrams
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Voronoi Diagrams
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Voronoi Diagrams



64

Voronoi Diagrams
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Voronoi Diagrams
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Voronoi Diagrams
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Voronoi Diagrams
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Voronoi Diagrams
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Voronoi Diagrams



70

Voronoi Diagrams
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Voronoi Diagrams
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Voronoi Diagrams
✔ We can also compute the Voronoi diagram by computing the 

Delaunay triangulation of our set of points.

✔ A Delaunay triangulation is a collection of triangles built using our 
original set of points as vertices.

✔ There is one condition though, “No triangle’s vertex should lie inside 
the circumcircle of other triangles in the formation”

✔ We have 10 points in black 
and it’s easy to see that no 
other point lies within the 
drawn circumcircles.

✔ We also denote the origin of 
each circumcircle with a green 
dot.
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Voronoi Diagrams

✔ By closely comparing the two graphs visually, and imaging a circle around each triangle on 
the right, we can see a connection with the resulting Voronoi diagram on the left. 
Furthermore, every triangle circumcircle that we draw over actually corresponds to a vertex 
in the Voronoi graph.

✔ That is why if we have a ready Delaunay triangulation, we just need to find the edges of 
our Voronoi graph by forming an edge from each neighboring triangle’s circumcenter to its 
own circumcenter. 
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Voronoi Diagrams

✔ However, the method of choice is Fortune’s sweepline algorithm, 
especially since robust implementations of it are readily available. 

✔ Advantages of Fortune’s algorithm include that 

(1) it runs in optimal Θ(n log n) time,

(2) it is reasonable to implement, and

(3) we need not store the entire diagram if we can use it as we sweep 
over it.
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Review Questions

1)  Show with examples that  if p1 x p2 is positive, then vector p1 is clockwise 
from vector p2 with respect to the origin (0, 0) and that if this cross product is 
negative, then p1 is counterclockwise from p2.

2) Give an O(1) algorithm to determine whether given two line segments 
intersect.

3) Define Convex Hull. Discuss Graham’s scan algorithm to compute the 
convex hull.

4) What are Voronoi diagrams? Explain randomized incremental construction 
method to construct Voronoi diagrams and analyze it.
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